电渗析深度处理农药生产尾水

我国是农药生产大国,年产量达400kt。农药生产废水存在毒性高、成分复杂、高盐分等问题,处理出水往往残留难降解的毒性污染物,具有很大的危害性,同时尾水中的盐分含量较高。目前针对含盐废水的处理方法较为单一,是废水处理中的难题之一,若将处理尾水进行深度处理循环利用,不但可以缓解用水压力,同时可大大降低对环境的污染。李继、周元祥等人,采用人工快渗生物滤池深度处理有机农药废水;王书、冯义德等人采用膜生物反应器-高级氧化-超滤组合工艺深度处理杂环类农药废水;还有很多研究者利用高级氧化法处理尾水中残留农药。以上研究大多针对尾水中有机农药,而针对尾水中盐分的去除研究较少。目前对于废水深度处理技术主要有物理吸附法、膜分离技术、氧化技术、生物法,以及这些技术的联用。

电渗析法作为膜分离技术的一种,具有能量消耗低、药剂耗量少、环境污染小、操作简单、易于实现自动化、水的利用率高等优点,应用于农药生产尾水的深度处理可达到脱除盐分和分离小分子有机物减低出水COD的良好效果。江苏省金坛市某化工集中区现有农药化工生产企业5家,其中1家主要产品有三环唑、丙环唑、三氮唑等类杀菌剂和粉唑醇、戊唑醇、己唑醇等水稻施用药类的原药及制药。5家企业的生产及生活污水集中在污水处理厂,处理工艺流程为生产废水先进行Fenton预处理,之后与生活污水混合进入生化处理部分,最后经折流池及终沉池出水。

笔者针对该尾水的水质特点,采用四室电渗析反应装置对其进行处理,同时考察分析其膜污染问题,以期在深度处理的同时回收酸碱,实现资源的循环利用。

实验采用自制的四室电渗析反应装置,尺寸为18cm×12cm×19cm,槽室间隔宽度为3.5cm,整个反应器通过阴阳离子交换膜(均相离子交换膜)分为4个独立的槽室,各槽室通过蠕动泵(BT100-1L)单独循环,阴阳离子交换膜的排列顺序为中间为阴离子交换膜,2侧为阳离子交换膜。

电极采用自制的含有锡锑中间层的Ti/SnO2-Sb/PbO2电极,制作方法及流程分为钛基体的制备、中间锡锑中间层的刷涂和电沉积表面PbO2。膜的有效面积为80cm2,电极的有效面积为150cm2。实验流程图如1所示。

反应器总分为4个槽室,分别为阴阳极室、浓缩室和废水室,阳极室中为1.0mol/L稀硫酸溶液,进水体积1L,电导率是59mS/cm,pH=0.96;阴极室中为0.1mol/L的NaOH溶液,进水体积1L,电导率为23mS/cm,pH=13.87;浓缩室进水为0.01mol/L的稀硫酸,进水体积1.7L,电导率5.36mS/cm,pH=1.959;淡水室的进水为污水处理厂的二沉池出水,进水体积为0.7L,电导率4.83mS/cm,TOC、NaCl、Na2SO4的质量浓度分别为234.5、1510、3031mg/L,pH为7.79,浊度4.49NTU。溶液通过2台蠕动泵不断的进行循环,阴阳极室的进水体积流量为250mL/min,浓缩室和淡水室的进水体积流量为300mL/min。

根据水质可知,其TOC含量较高,说明残留较多生物难降解有机物;同时电导率较高,盐分残留量较大,同时具有一定的色度。

将干净的阴阳离子交换膜分别固定夹紧在反应器中,之后将各槽室的溶液泵入,并在蠕动泵的作用下以一定的流速进行循环。采用恒压的操作条件,定时测定淡水室及浓缩室中溶液的电导率、pH、TOC和离子含量,同样的条件下离子交换膜不更换重复运行10次,对比分析出水各项参数的变化,最后将反应器拆开取出已污染的离子交换膜进行分析,根据对膜污染的分析确定有效的膜清洗方案。

根据式(1)~式(3)分别计算盐分脱除率E、离子回收率R的和TOC去除率T:

尾水中残留较高含量的NaCl和Na2SO4,利用阴阳离子交换膜的选择透过性,可将阴离子和阳离子分离到废水室2侧的槽室中,如图2所示。

阳极板和阴极板分别置于反应器的左右2侧,在槽室充满溶液时形成均匀的电场,溶液中的阴阳离子在电场力的作用下分别向阳极和阴极方向运动,反应器中间的是阴离子交换膜,2侧的是阳离子交换膜,淡水室中的Na+在电场的作用下通过阳离子交换膜到达阴极室,同时水在阴极表面发生电解反应产生的OH-和Na+形成NaOH溶液,阳极电解水产生的H+通过左侧的阳离子交换膜到达浓缩室和淡化室的阴离子通过阴离子交换膜形成H2SO4和HCl的酸溶液,淡化室中的离子得到脱除,浓缩室和阴极室的溶液不断浓缩达到了回收酸碱的目的。

TOC含量采用总有机碳测定仪(ElementarvarioTOCcube),电导率和pH的测定采用多参数水质测定仪(DZS-708),离子色谱(ICP)测定离子含量(IC-2100),特征污染物通过高效液相色谱(waters2996,C18柱,流动相甲醇、水体积比1:1)和GC-MS(variansaturn)测定;直流电源(APR3010)。

取尾水200mL和一定量的二氯甲烷放入锥形瓶中盖紧,在震荡箱中充分摇匀后取出,再利用超声萃取的方法超声20min后静止分液,将分离出的二氯甲烷溶液在39.8℃的水浴条件下蒸发浓缩,浓缩液用无水Na2SO4干燥后通过GC-MS进行测定,结果见图3。

由图3可知,废水的有机成分较为复杂,结合高效液相色谱图分析其中含量最高出峰最为明显的3种物质分别为2-氨基-4-甲基苯并噻唑、粉唑醇、三环唑,其中2-氨基-4-甲基苯并噻唑为三环唑生产过程中的重要中间体,粉唑醇和三环唑为生产过程中成品的流失。这3种物质在尾水中残留量较多,同时还含有少量的丙环唑、三氮唑等,其他残留较多的为小分子的中间体和生产副产物。这说明这些有机物的生物降解性较差,出水残留量较多,具有一定的毒性,不能直接回用。

采用恒压操作的方式,将各槽室的溶液分别充满各个槽室,接通电源在一定的工作电压下,各槽室的溶液单独以一定的流速循环,监测其电导率随时间的变化,结果如图4所示。

由图4可知,尾水的电导率随时间不断降低,出水的电导率为0.202mS/cm,脱盐率为95.8%,同时Cl-和SO42-的去除率分别为91.2%和95.1%。在运行的前2h内可以明显看出SO42-的脱除速率大于Cl-,这原因主要是SO42-的价态高,在相同的电场作用下,受到的推动力更大,所以运动速度更快,脱除效率高。根据图4还可知,盐分的脱除在起初的3h内速率较快,之后脱除速率很慢,原因是电渗析采用恒压条件工作,随着淡化室盐分的脱除整个电解槽的电阻不断增大,电流随之减小,脱盐速率直接受到电流大小的影响,所以后面3h的脱盐速率低,考虑能耗问题,可适当缩短运行时间。

由图5可知,随着运行时间的增加,TOC质量浓度呈指数趋势下降,同样在前3h内去除速率较快,这与电流大小和物质的含量有关。最终TOC的去除率为72.2%,脱除效果良好。尾水中有机物的分析结果可以知道,尾水中大部分机物的相对分子质量小于350,电渗析可有效脱除带电的小分子有机物,所以综合考虑电渗析出水TOC降低的原因主要有2个:

(1)废水中的一些小分子有机物在电场的作用下荷电或在水中发生水解,这些带电的有机物在电场力的推动下通过离子交换膜脱除;(2)部分有机物通过电场作用或膜的吸附作用,堵塞在膜孔径中或沉积在膜的表面,都对出水TOC降低有贡献。

表1为电渗析出水的水质分析结果及与GB/T19923-2005工业回用水的对比。

由表1可知,出水盐分基本脱除,电导率为0.202mS/cm,与生活用水相当,有机物去除率较高,出水TOC得到良好的改善,尾水的浊度由4.49NTU降到2.1NTU,同时尾水进水为淡黄色有一定的色度,出水为澄清,色度问题得到很好的解决,但出水的pH为3.35,出水水质偏酸,这是电渗析过程普遍存在的问题,电渗析过程中发生水的解离,而且这种现象主要发生在阴离子交换膜上,所以出水偏酸。整体出水水质与GB/T19923-2005的工业回用水标准比对,电渗析出水盐分含量较低,达到回用要求。

电渗析利用膜的选择透过性和电极电解水产生的H+和OH-分别于废水中的酸根阴离子和阳离子结合达到酸碱回收的目的,实验中考察了浓缩室混合酸的回收效果,结果见图6。

由图6可知,在电渗析反应器运行的过程中淡化室溶液的电导率随着时间不断的下降,与此对应的浓缩室溶液的电导率随时间不断上升,下降和上升速率最快的部分出现在最初的3h之内,将电渗析出水通过离子色谱和ICP进行测定,通过式(2)计算得Cl-、SO42-、Na+的回收率分别为84.8%、82.3%、85.9%,回收率与去除率相比较可发现离子回收率偏低,分析可能原因,一方面是部分离子被结合在离子交换膜上,另一方面是工作电极和膜表面会吸附一部分离子,但在连续运行过程中总体的回收率不会受到这2方面的影响。

在相同的操作条件下连续运行,考察其运行时间的变化,以出水的电导率不再下降为止,结果见图7。

由图7可知,随着运行时间的增加,每次出水时间也在不断增加。原因主要是由于膜污染造成的,随着运行次数的增加废水带进有机物对膜造成污染,表面污染使得膜的有效面积减少效率下降,孔径的堵塞使盐离子在穿过膜的过程中速度降低,所以这些都导致盐分脱除效率下降运行时间延长。由于离子的脱除效果变差,相同处理时间后尾水中残留的离子就越多,所以随着运行次数的增加相同运行时间下尾水的电导率升高。

不更换离子交换膜重复运行多次,以出水电导率不在下降为终点,考察其出水TOC含量的变化,结果见图8。

由图8可知,随着运行次数的增加,TOC的去除效率降低,多次运行后的最终出水TOC呈现波动下降的趋势。这是因为大分子物质被膜截留吸附,有机物在电场下运动过程中可能会被截留在膜的孔径中造成不可逆污染,也可能有一些输水性或亲水性不强的有机物沉积在膜的表面造成污染,这些都导致膜的有效工作面积降低,工作效率和性能下降[17-18]。所以随着运行次数的增加,有机物穿过膜孔的行为受到抑制,脱除效率和能力下降。

将电渗析出水利用气质和高效液相色谱进行分析发现,电渗析处理后的出水中只残留一部分的三环唑、粉唑醇和极少的小分子有机物,通过对浓缩室出水和阴极室出水分析发现小分子有机物被分离到了这2个槽室,但是对于3种特征污染物在阴极室和浓缩室都没有检测到,其中部分依然留在水体中,但出水中2-氨基-4-甲基苯并噻唑的含量几乎为0,这3种特征污染物相比其他有机物的相对分子质量较大,所以分析3种物质不能有效穿过离子交换膜,而是发生了膜污染。

为验证3种物质的去向,将淡化室2侧的阴阳离子交换膜取下,分别浸泡在同体积的甲醇溶液中,取浸泡液进行高效液相色谱的分析,结果可知,阳离子交换膜主要受2-氨基-4-甲基苯并噻唑的污染,说明该物质基本被吸附到了阳离子交换膜的表面,同时还有少量的粉唑醇和三环唑的污染,这与膜和物质的本身性质有关。对于阴离子交换膜上的污染物的种类较多,这是因为大部分有机物在水中带有负电荷,所以在电场的作用下基本是运动到阴离子交换膜表面发生分离或污染,一般情况下阴离子交换膜污染较为严重。

通过对电渗析过程中有机污染物的行径分析可知,极小分子物质可以在电渗析过程中有效分离去除,而对于相对分子质量较大和疏水性物质则不容易通过离子交换膜,发生吸附或截留在膜上的现象。

连续运行一段时间后膜由于污染而脱盐效率下降,新鲜干净的膜在运行3h后的脱盐率为94.0%,膜污染后3h的脱盐率降低到85.6%。在2.3.3节的分析可以知道,造成膜污染的主要是尾水中残留的有机物,所以针对有机污染分别采用了酸碱清洗和活性剂清洗[19]。酸碱清洗是先用质量分数2%的盐酸进行冲洗后,再用质量分数0.5%的NaOH冲洗,最后用清水冲洗到pH为7为止;活性剂清洗是用质量分数分别为0.5%的聚乙二醇、1%的过碳酸钠和0.5%的聚磷酸钠溶液浸泡20h,之后运行3h。

酸碱清洗后运行3h后的脱盐率恢复到91.9%,活性剂清洗脱盐率恢复到92.2%。酸碱清洗和活性剂清洗效果相差不多,考虑活性剂清洗剂中含有磷,所以可采用酸碱清洗,必要时活性剂清洗,脱盐效果可得到良好的恢复。

污水处理厂尾水的电导率为4.83mS/cm,主要盐分主要分别为NaCl、Na2SO4,质量浓度分别为1510、3031mg/L,TOC的质量浓度为234.5mg/L,残留的特征污染物主要有2-氨基-4-甲基苯并噻唑、粉唑醇、三环唑和较多小分子中间体和副产物,如三氮唑等。

电渗析处理出水的电导率为0.202mS/cm,脱除率为95.8%,TOC去除率为72.3%,Cl-和SO42-质量浓度分别为133、148.5mg/L,浊度为2.1NTU,出水澄清,色度较低,出水水质总体良好,但pH偏低。SO42-的选择透过性优于Cl-脱除速率较快,Cl-、SO42-、Na+的回收率分别为84.8%、82.3%、85.9%。

随着运行次数的增加出现膜污染现象,导致运行时间延长,脱盐效率降低,出水TOC含量升高,分析发现阳离子交换膜主要受到2-氨基-4-甲基苯并噻唑的污染,阴离子交换膜污染物质复杂。

活性剂清洗效果略好于酸碱清洗,综合考虑采用酸碱清洗,必要时活性剂清洗,膜的性能可得到良好的恢复。

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

9月1日,中国城镇供水排水协会发布关于征求团体标准《施工工地排水处理及利用技术标准(征求意见稿)》意见的通知,本标准旨在规范施工工地绿色施工过程中的生活污水、生产废水及雨水的处理及利用,节约资源及防止排水造成二次污染,实现排水的安全、有序、环保。中国城镇供水排水协会关于征求团体标准

“感谢广陵生态环境局,这次能够与污水处理厂‘牵手’,多亏了他们的帮忙!”青岛啤酒(扬州)有限公司相关负责人连声感叹。日前,青岛啤酒(扬州)有限公司与扬州市洁源排水有限公司(汤汪污水处理厂)约定了间接排放限制的合作协议,并已制定相应实施条款——这是扬州市首次实现协议排污。“对污水处

近日,山东省生态环境厅会同省发展改革委、省工业和信息化厅、省财政厅、省工商联编制印发了《“抓环保促发展”100例》。这些典型案例用事实和数据证实了保护生态环境和发展经济并行不悖,将为全省各地贯彻新发展理念,探索以生态优先、绿色发展为导向的高质量发展新路子提供有益参考和借鉴。今天为您

2020年4月,生态环境部印发《关于实施生态环境违法行为举报奖励制度的指导意见》,指导各地建立实施生态环境违法行为举报奖励制度,要求省级和设区的市级生态环境部门建立并实施举报奖励制度。2021年1月,生态环境部印发《关于优化生态环境保护执法方式提高执法效能的指导意见》,对完善举报奖励机制工

北极星环保网获悉,8月12日,贵阳市生态环境局发布关于征求《进一步优化贵阳贵安产业园区生态环境保护基础设施建设管理的指导意见》意见的公告,《意见》提出,严格控制增量。新(改、扩)建产业园区(聚集区)及建设项目应按照开发建设时序,建设完备的生产废水(生活污水)、固体废物(危险废物)、

今年以来,长沙市组织开展防范化解重大生态环境风险隐患“利剑”行动,全力保护环境安全防线。近日,长沙市生态环境局曝光3起环境违法典型案例。一、宁乡某作坊暗管排放有毒水污染物案案情简介2022年5月5日,接群众投诉举报,宁乡市生态环境保护综合行政执法大队对夏铎铺辖区内某处进行现场执法检查,

近日,维尔利集团成功签订MONIN莫林食品(嘉兴)有限公司废水处理项目合同,项目设计处理规模600吨/天,项目远期将实现零排放。MONIN是全球专业糖浆第一品牌,是全球最大、最著名的优质风味糖浆生产者。公司于1912年创办,总部位于法国布尔日市,主要生产风味糖浆、果酱、调味酱、调味粉、利口酒等共计

东莞市生态环境局充分利用非常规时段对重点涉水企业进行突击检查,严厉打击偷排直排、超标排放环境违法行为。近日,执法人员就在东坑镇查获一间利用化粪池、雨水渠偷排生产废水的企业,其将面临最高100万元的罚款。案件情况近日,市生态环境局对东坑镇重点企业进行突击夜查,检查至某企业时,发现其已

从济南市生态环境局获悉,近日济南市启动鼓励酒类等生产企业与下游污水处理企业开展污水资源化利用试点工作,通过让“放错位置的资源”化身为宝,切实减轻企业生产治污成本,积极为企业在疫情期间纾困解难出实招、见实效,实现经济效益、环境效益、社会效益多方共赢,为推动实现碳达峰、碳中和目标做出

莒南县鑫恒生鲜肉经营部位于莒南县坪上镇驻地,经营者李某某,建有生猪屠宰生产线条,主要设备包括刮毛、放血、冲洗设备,每天屠宰生猪10头左右,生产废水配套污水处理站。01基本案情2022年5月14日,市生态环境局临港经济开发区分局执法人员现场检查发现,该企业屠宰车间的放血废水未经处理,由暗渠直

近日,维尔利集团成功签订湖北双环科技污水处理系统提标改造项目合同,项目设计处理规模9600吨/天,出水水质满足《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级A排放标准,为后期废水的资源化利用提供保障。湖北双环科技股份有限公司是国有大型上市公司,为湖北宜化集团全资子公司,位于有着

摘要:化工生产所运用的中和工艺将会产生大量的废水,如果不加以处理,将会对环境造成严重的破坏以及资源的浪费。双极膜电渗析法将废水中的盐转化成相应的酸以及碱,同时,酸以及碱又可以应用到实际的化工生产中,实现了经济效益与环境效益之间的结合。本文主要针对于双极膜电渗析法在澳化丁基橡胶废水与废

1电渗析概念与原理1.1概念利用半透膜的选择透过性来分离不同的溶质粒子的方法称为渗析。在电场作用下进行渗析时,溶液中的带电的溶质粒子通过膜而迁移的现象称为电渗析。利用电渗析进行提纯和分离物质的技术称为电渗析法,它是20世纪50年代发展起来的一种新技术,最初用于海水淡化,现在广泛用于化工、

当前,污水处理已成为环境保护的重要组成部分,由于水污染严重,污染物成分复杂,较难处理,容易造成非常严重的环境污染。目前已经有众多的污水处理工艺来相结合进行污水处理,本文将详细解释电渗析法处理废水,详见下文:1、电渗析概念与原理1.1概念利用半透膜的选择透过性来分离不同的溶质粒子的方法

海水淡化是实现水资源利用的开源增量技术,可以增加淡水总量,且不受时空和气候影响,水质好,可以保障沿海居民饮用水和工业锅炉补水等稳定供水。全球海水淡化设备年均市场容量约40亿美元,中国海水淡化设备未来十年投资规模将高达120140亿元,海水淡化发展进入黄金十年。全球有海水淡化厂1.3万多座,

8月26日,嘉戎技术披露2022年半年度报告,2022年上半年,公司实现营业收入3.62亿元,同比增长25.78%;归属于上市公司股东的净利润4402.35万元,同比下降28.52%;归属于上市公司股东的扣除非经常性损益的净利润3502.61万元,同比下降15.34%;基本每股收益0.45元。公司主营业务为膜分离装备、高性能低温

高盐废水是指总含盐量至少3.5wt%的废水。高盐废水来源广泛、成分复杂,通常含有大量Cl-、SO42-、Na+、Ca2+、Mg2+等可溶性无机盐离子,以及含量不等的重金属离子。其中,火电厂洗煤工艺中产生的脱硫废水就是一种典型的工业高盐废水。因此,高盐废水的处理难度极大,能耗极高,并且处理过程中通常还伴有

盐湖提锂火了!在水务企业2021业绩整体表现不尽人意之时,很多企业开始将目光瞄向新的领域,而盐湖提锂这个站在“最强风口”上的赛道成为了如碧水源、巴安水务、久吾高科等膜分离技术企业的新的选择。那么,龙头企业们纷纷布局的“盐湖提锂”究竟是什么?他们为什么选择了这个赛道?盐湖提锂站上新风口

嘉戎技术公告,公司使用募集资金3000万元向全资子公司优尼索进行增资,用于实施“DTRO膜组件产能扩充及特种分离膜组件产业化项目”。本次增资完成后,优尼索的注册资本将由人民币1,000万元增加至人民币4,000万元,仍为公司的全资子公司。本次使用募集资金对优尼索进行增资,是基于公司募集资金使用计划

4月21日,厦门嘉戎技术股份有限公司(股票简称:嘉戎技术)敲钟上市,成功登陆深交所创业板。嘉戎技术本次公开发行股票2,913万股,其中公开发行新股2,913万股,发行价格38.39元/股,新股募集资金11.18亿元,发行后总股本11,649.7080万股。嘉戎技术主要从事膜分离装备、高性能膜组件等产品的研发、生产

4月8日,深交所官网发布《厦门嘉戎技术股份有限公司首次公开发行股票并在创业板上市网上路演公告》。厦门嘉戎技术股份有限公司首次公开发行人民币普通股A股并在创业板上市的申请已经深圳证券交易所创业板上市委员会审议通过,并已经中国证券监督管理委员会同意注册(证监许可[2022]499号)。嘉戎技术是

日前,中国石化联合会就《膜分离耦合法含苯系物废气治理工程技术规范》团体标准进行公开征求意见,详情如下:各有关单位:根据《关于印发2019年第一批中国石油和化学工业联合会团体标准项目计划的通知》(中石化联质函[2019]133号),由中国石油和化学工业联合会提出,中国化工环保协会组织制定的《膜

本文综述了近年来基于二维纳米材料的水处理功能膜研究进展,重点介绍了共混法、自组装等制备方法,并总结了此类功能膜在抗污染、膜通量恢复、强化污染物去除、调控盐截留及污染物监测领域的应用。最后对基于二维纳米材料的水处理功能膜发展方向,如限域催化、调控盐分离、监测传感等新兴领域进行了分析和展望。

7月6日—7月8日,青岛国际水大会在青岛西海岸新区顺利召开,大会以水资源、水环境、水生态、水安全为四条产业线,涵盖工业与城市污水资源化利用、城市饮用水安全保障、城市水务及智慧水务、海水淡化利用、膜分离技术、水生态修复、垃圾渗滤液处理以及污泥处理等诸多领域。陕西鼎澈膜科技有限公司(以下简称“鼎澈膜”)携最新产品——国产化高性能海水淡化膜参加本次大会,鼎澈膜营销总监王帅就产品特性、公司发展等问题与北极星环保网进行了深入交流。

进入“十四五”后,“资源化利用”成为污水处理行业热议词汇,其缘由可从《“十四五”城镇污水处理及资源化利用发展规划》中窥知一二。最新规划提到,到2025年,加强再生利用设施建设,推进污水资源化利用。这一规划为“十四五”时期城镇污水收集处理、资源化利用和污泥无害化资源化处理处置设施建设与运行提出了清晰的时间表、任务书和路线图。

反渗透膜分离技术是在高于溶液渗透压作用下,利用半透膜拦截水中的盐类、胶体、微生物以及有机物等杂质,实现溶质与溶剂的有效分离。反渗透技术在电厂锅炉补给水处理中有广泛应用,是制备电厂生产所需除盐水的重要工序。补给水系统反渗透回收率通常为75%,排放约25%的浓水。反渗透浓水为经常性排水,水量不容忽视,如果浓水直接外排将造成水资源的浪费。

超11亿!湖南建工集团预中标高新区北区大学城南路及立交改造二期及高新区市政排水管网改造EPC项目

文字实录 推动工业绿色低碳循环发展!“新时代工业和信息化发展”系列主题新闻发布会第八场今举行

中建生态环境联合体中标7.3亿元济宁市农村生活污水治理EPC项目一标段工程

文字实录 推动工业绿色低碳循环发展!“新时代工业和信息化发展”系列主题新闻发布会第八场今举行